
SSD
101

Everything You Ever
Wanted to Know

SOLID STATE DRIVES 101

Copyright © 2016 by Cactus Technologies Inc.

All rights reserved. No part of this publication text may be uploaded
or posted online without the prior written permission of the publisher.

For permission requests, write to the publisher, addressed “Attention:
Permissions Request,” to marketing@cactus-tech.com.

SECTION 1
Introduction - The Basic NAND Flash Cell

SECTION 2
Introduction - SLC, MLC and TLC NAND Flash

SECTION 3
NAND Architecture - Strings and Arrays

SECTION 4
NAND Architecture - Pages and Blocks
SECTION 5
NAND Architecture - Planes and Die

SECTION 6
NAND Architecture - Component Packaging

SECTION 7
SSD Controller Architecture - Basic Overview

SECTION 8
SSD Controller Architecture - Channels and Banks

SECTION 9
SSD Controller Architecture - Block Diagram

SECTION 10
SSD Controller Functions - Wear Leveling

SECTION 11
SSD Controller Functions - Garbage Collection

SECTION 12
SSD Controller Functions - TRIM Command

SECTION 13
SSD Controller Functions - Over-Provisioning

3

5

7

9

11

13

15

17

19

22

24

26

28

IndexAbout the Author

Steve Larrivee
VP Sales & Marketing
Cactus Technologies

Steve Larrivee has over 30 years’ experience in the data storage
market, including 5 years at Seagate Technology and 10 years at
SanDisk. He joined Cactus Technologies Limited as an equity partner
and Co-Founded Cactus USA in 2007 with partner Tom Aguillon.

https://www.linkedin.com/in/steve-larrivee-a53a9a71
mailto:marketing@cactus-tech.com

Section 01: Introduction - The Basic NAND Flash Cell

The floating gate remains in its charged or uncharged state until it is
changed by surrounding circuitry. Removing power from the NAND device
does not affect the state of the floating gate which is why it is such a
valuable device for data storage.

How to Read a NAND Cell

To read a cell, voltage is applied to the control gate and current flow from
the source to drain is attempted.

If there is no current flow, it signifies the floating gate is charged (binary
0) - as in the diagram above. If there is current flow, the floating gate is not
charged (binary 1) - as in the diagram below.

FLOATING
GATE STATE

No Charge

Charged

REFERRED
TO AS

Erased

Programmed

BINARY ASSIGNED
VALUE

One - 1

Zero - 0

This section takes a look at the basics of a NAND flash cell, the building
block of almost every solid state drive. It is the first of several sections
describing the basics of Solid State Drives (SSD).

In order to store a single bit of data on a solid state drive, you need the
smallest building block - a single NAND flash cell. The simplest NAND cell
can be set to either a 0 or 1 state. It will continue to store that state even
after power has been removed.

What does a NAND Cell look like?

A simple NAND Flash Cell diagram is shown above. The NAND flash cell
is made from a floating gate transistor. Electrical charge is stored on the
floating gate which is isolated above and below by oxide insulating layers.

In its simplest form when the floating gate is charged, it is programmed
and recognized as a binary 0. When the floating gate has no charge it is
erased and recognized as a binary value of 1.

Source (S) Drain (D)

Control Gate

Control Gate

Insulator

Insulator

Silicon Substrate

Floating Gate

Source (S) Drain (D)

Control Gate

Control Gate

Insulator

Floating Gate

Insulator

Silicon Substrate

Source (S) Drain (D)

Control Gate

Control Gate

Insulator

Floating Gate

Insulator

Silicon Substrate

Introduction - The Basic NAND Flash Cell01

www.cactus-tech.com Page 3

http://www.cactus-tech.com/en/

Section 01: Introduction - The Basic NAND Flash Cell

How to Write a NAND Cell

To write a cell, a high voltage is applied to the control gate and electrons
move from the silicon substrate to the floating gate. This process is called
tunneling since the electrons “tunnel” through the oxide insulator to reach
the floating gate. See diagram below.

How to Erase a NAND Cell

To erase a NAND cell, a high voltage is applied to the silicon substrate and
electrons move from the floating gate to the silicon substrate. This uses
the same tunneling process as the writing process. See diagram below.

Source (S) Drain (D)

Control Gate

Control Gate

Insulator

Insulator

Silicon Substrate

Floating Gate

Source (S) Drain (D)

Control Gate

Control Gate

Insulator

Floating Gate

Insulator

Silicon Substrate

www.cactus-tech.com Page 4

NAND Cell Life

The tunneling process described in the Write and Erase functions cause
stress on the oxide insulator layer. Over time this stress breaks down the
oxide layer and the floating gate becomes unable to maintain a charge. At
some point the cell is no longer usable and must be retired. This is what is
responsible for the finite number of writes/erases per cell of NAND flash.

Section 01: The Basic NAND Flash Cell

http://www.cactus-tech.com/en/

Section 02: Introduction - SLC, MLC and TLC NAND Flash

How MLC and TLC Store More than One Bit Per Cell
The previous example shows a SLC (Single Level Cell) NAND Cell. When
any current is detected between the source and drain it can be concluded
the cell is programmed. Since only two states, programmed or erased, are
needed to represent one bit, that’s all that is needed.

With MLC (Multi Level Cell) NAND, there is a need to store two bits of data,
which requires 4 distinct states. In order to accomplish this, the MLC NAND
cell must be able to apply charge to the floating gate at four different levels
and later be able to detect which of the four levels is set.

The diagram below represents the additional electrons in blue on the
floating gate which must be set to precise levels so they can later be read
accurately. This makes MLC more challenging and slower to write than
their SLC NAND counterpart.

This section builds on the Basic NAND Flash Cell by showing the advances
in technology from the original SLC to MLC, and TLC NAND Cells.

For a simple review of the Basic NAND Cell, charges are either stored or
not stored on a floating gate which is sandwiched between two layers of
oxide which act as an insulator.

On the original and simplest type of NAND flash, if no current flows between
the Source and the Drain, it indicates the floating gate has a charge (blue
dots represent electrons) and therefore is programmed, representing a
binary 0. See diagram above left.

If current flow is detected, it indicates the floating gate does not have a
charge and is erased, representing a binary 1. See diagram above right.

Floating Gate

No Current - Floating Gate Programmed Current Flows - Floating Gate Erased

Source (S) Drain (D)

Control Gate

Control Gate

Insulator

Insulator

Silicon Substrate

Source (S) Drain (D)

Control Gate

Control Gate

Insulator

Insulator

Silicon Substrate

Floating Gate

Introduction - SLC, MLC and TLC NAND Flash02

www.cactus-tech.com Page 5

Floating Gate

Floating GateFloating Gate

Source (S) Drain (D)

State 1 - No Charge State 2 - Lightly Charged

Control Gate

Control Gate

Insulator

Floating Gate

Insulator

Silicon Substrate

Source (S) Drain (D)

Control Gate

Control Gate

Insulator

Insulator

Silicon Substrate

State 3 - Medium Charged

Source (S) Drain (D)

Control Gate

Control Gate

Insulator

Insulator

Silicon Substrate

State 4 - Highly Charged

Source (S) Drain (D)

Control Gate

Control Gate

Insulator

Insulator

Silicon Substrate

http://www.cactus-tech.com/en/

www.cactus-tech.comSection 02: Introduction - SLC, MLC and TLC NAND Flash Page 6

TLC (Tri Level Cell and also known as Triple Level Cell) NAND has an even
more complicated mission. It must be able to store and recognize 3 bits
per cell, requiring 8 distinct states.

Voltage Level in SLC, MLC and TLC NAND Cells
The maximum voltage in each cell is about the same. So SLC cells have
plenty of guard band between their states. Because of this, SLC NAND is
able to withstand temperature extremes and other adverse effects much
better than MLC or TLC NAND.

The Image above shows the levels of voltage thresholds required to store
the multiple states in each of the memory technologies. Not counting
guard band area, each SLC state is allocated 50% of the voltage range;
MLC 25% and TLC 12.5%.

As you can see, MLC and TLC have much tighter tolerances and will be
more susceptible to external environmental and circuit effects than SLC
NAND. Their principal advantage is cost.

Voltage Allocated to each State based
on NAND Flash Technology

SLC
1-Bit/Cell

MLC
2-Bits/Cell

TLC
3-Bits/Cell

0
00

01

10

11
111

110

101

100

011

010

001

000

1

SLC NAND MLC NAND TLC NAND
V

Total
(Total Voltage
Cell Capable

of Storing)

http://www.cactus-tech.com/en/

Combining Individual NAND Flash Cells into a String
All by itself, a single flash cell would not be of much value. But combining
many of them is what allows the storage of significant amounts of data.
The first step in combining individual NAND cells is the NAND String.

The image above shows the NAND String depicted in both a diagram form
and in schematic form. Schematic form is typically used to show much
larger arrays.

NAND cells are connected end to end to form a string of cells. Typically 32
or 64 cells are connected together in series with each other, with each cell
representing a bit of data (0 or 1).

The previous two sections focused on the individual NAND Cell, whether
used to store one, two or three bits. This article focuses on the bigger
picture of how numerous NAND cells are combined into strings and arrays.

For a quick review, a single NAND flash cell stores an electrical charge
on a floating gate which is isolated by oxide insulating layers above and
below. In its simplest form when there is a charge on the floating gate it is
programmed and recognized as a binary 0. When the floating gate has no
charge it is erased and recognized as a binary value of 1.

Diagram of a Single NAND Flash Cell

NAND Architecture - Strings and Arrays03

www.cactus-tech.comSection 03: NAND Architecture - Strings and Arrays Page 7

Source (S) Drain (D)

Control Gate

Control Gate

Insulator

Floating Gate

Insulator

Silicon Substrate

Source (S)

Source (S)

Control Gate

Control Gate Control Gate Control Gate Control Gate Control Gate Control Gate

Control Gate

Insulator

Floating Gate

Insulator

Control Gate

Control Gate

Insulator

Floating Gate

Insulator
Drain (D)

Drain (D)

Control Gate

Control Gate

Insulator

Floating Gate

Insulator

Control Gate

Control Gate

Insulator

Floating Gate

Insulator

Control Gate

Control Gate

Insulator

Floating Gate

Insulator

Control Gate

Control Gate

Insulator

Floating Gate

Insulator

NAND String (Shown in Diagram and Schematic Versions)

http://www.cactus-tech.com/en/

www.cactus-tech.comSection 03: NAND Architecture - Strings and Arrays Page 8

Combining NAND Strings into Arrays

NAND Flash Array

Dr
ai

n
(D

)

Dr
ai

n
(D

)

Dr
ai

n
(D

)

Dr
ai

n
(D

)

Dr
ai

n
(D

)

So
ur

ce
s (

S)

So
ur

ce
s (

S)

So
ur

ce
s (

S)

So
ur

ce
s (

S)

So
ur

ce
s (

S)

While a NAND String can store 32 bits of data, this still only translates into
4 bytes of data or enough for 4 characters. So, strings are combined into
larger arrays to achieve more useful amounts of storage.

The image to the left shows the NAND String schematic repeated several
times in an array. Notice the additional connections made to the NAND
strings which serve to tie the array together. The red line connects the
Sources (S) of the individual strings.

The yellow lines connect the Control Gates of the NAND strings. In the
array, the control gates are connected horizontally, but not vertically. In
addition, the Drain (D) lines are not showing connections since they will be
used separately in the array.

http://www.cactus-tech.com/en/

Each string also contains two control mechanisms in series with the NAND
cells. String and ground select transistors are connected to the String
Select Line (SSL) and Ground Select Line (GSL).

The previous sections focused on the individual NAND Cell, NAND strings
and arrays. This section digs deeper into arrays and builds up to the page
and blocks of NAND flash.

For a quick review, single NAND flash cells individually storing a single bit
of 0 or 1 are joined together in strings and arrays to form much larger
data storage structures. These strings are connected to allow storage and
retrieval of data from selected cells. Very large data storage devices are
made possible by adding more and more NAND cells to the array.

The NAND Flash String
The next Image shows the much larger array with control and data lines
as well. Highlighted in green with a yellow background is the NAND String
discussed in the previous article. There are many strings in between
depicted as dots.

Strings (shown as columns) are the minimum unit to read and are typically
comprised of 32 or 64 NAND cells. All strings in the array are connected
at one end to a common Source Line (SL) and at the other end to the Bit
Line (BL).

NAND Architecture - Pages and Blocks04

www.cactus-tech.comSection 04: NAND Architecture - Pages and Blocks Page 9

Bit LineBit LineBit LineBit Line

String Select Line

Word Line

Word Line

Word Line

Word Line

Word Line

Word Line

Ground Select Line

Source Line

NAND Block

http://www.cactus-tech.com/en/

The NAND Flash Block

This image above shows the NAND Block with green lines and yellow
highlighting.

A block is a 2-dimensional matrix comprised of pages (rows) and strings
(columns). The total number of bits in a block can be calculated by
multiplying the number of strings by the number of pages.

From a Micron presentation at the 2014 Flash Memory Summit, maximum
Pages per Block are approaching 512 and Block sizes are reaching up to
8 Mbytes.

www.cactus-tech.comSection 04: NAND Architecture - Pages and Blocks Page 10

The NAND Flash Page

The image above shows the NAND Page with green lines and yellow
highlighting.

Pages (shown as rows) share the same word line and are the minimum
unit to program. They are typically comprised of at least 32,768 NAND
cells, with many of the newer NAND devices have page sizes of 64K or
128K cells.

Most page sizes are referred to as 2K, 4K, 8K, etc. This signifies the page
size in bytes. So if the page size has 32,768 NAND Cells (bits), this equates
to 4096 bytes or 4K Page size.

Bit LineBit LineBit LineBit Line

String Select Line

Word Line

Word Line

Word Line

Word Line

Word Line

Word Line

Ground Select Line

Source Line

NAND Block

Bit LineBit LineBit LineBit Line

String Select Line

Word Line

Word Line

Word Line

Word Line

Word Line

Word Line

Ground Select Line

Source Line

NAND Block

http://www.cactus-tech.com/en/

The NAND Plane and Die

This bank of Blocks highlighted in yellow above is referred to as a Plane.
One or many planes are grouped together to form a NAND die highlighted
in the illustration on the next page. There are many configurations of die
to meet many different design needs of OEMs.

Previous sections ranged from the basic NAND cell up to the block level. In
this section we move up to discuss NAND planes and die.

As discussed in earlier, individual NAND cells are combined on Strings and
Pages which are configured as columns and rows of an array. The overall
array is called a Block. Some of the latest NAND components have block
sizes as high as 8Mbytes.

This section will build from the Block level to show the pieces that make
up a NAND die.

The NAND Block Structure

The NAND Block which is made up of a matrix of Strings and Pages is a
building block for larger data structures. A single block is grouped together
in a bank of many other blocks as shown in the illustration above.

NAND Architecture - Planes and Die05

www.cactus-tech.comSection 05: NAND Architecture - Planes and Die Page 11

Bit LineBit LineBit LineBit Line

String Select Line

Word Line

Word Line

Word Line

Word Line

Word Line

Word Line

Ground Select Line

Source Line

NAND Block NAND Architecture - Block Structure

Block n - 1

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 0

NAND Plane

Block 1

Block 2

Block 3

Block 4

Block 5

Block n - 1

Block 6

Bit LineBit LineBit LineBit Line

String Select Line

Word Line

Word Line

Word Line

Word Line

Word Line

Word Line

Ground Select Line

Source Line

NAND Architecture - Block Structure

http://www.cactus-tech.com/en/

www.cactus-tech.comSection 05: NAND Architecture - Planes and Die Page 12

A single die or multiple die stacked on top of each other are packaged into
a usable form in popular JEDEC standard TSOP, BGA and other packages.

Over time as the requirements for additional storage continue, new ways
of increasing density arise. One of the new technologies for high capacity
SSD making its way to the forefront is 3D Memory.

NAND Die with Multiple Planes

NAND Die

Block 0

NAND Plane

Block 1

Block 2

Block 3

Block 4

Block 5

Block n - 1

Block 6

Block 0

NAND Plane

Block 1

Block 2

Block 3

Block 4

Block 5

Block n - 1

Block 6

Block 0

NAND Plane

Block 1

Block 2

Block 3

Block 4

Block 5

Block n - 1

Block 6

http://www.cactus-tech.com/en/

The illustration below shows a cutaway of a NAND component with
multiple layers of die stacked on top of each other to create a single large
capacity NAND memory device.

There is an insulating layer between each NAND die and connections are
made from each NAND die to the substrate using a wire bonding machine.
The substrate is like a very thin PCB (Printed Circuit Board) which is the
base for the stacked die. As with the single die cutaway shown earlier, the
entire top of the component is encapsulated.

If the parts share a JEDEC standard form factor, the parts appear physically
identical regardless of the number of die inside.

Previous sections started at the basic NAND cell and built up to the NAND
die level. We go up one more level in this section to discuss common NAND
component packaging options.

The NAND die themselves are relatively fragile and require special
equipment for placement and bonding. Typically NAND die are placed
inside a protective component package as opposed to directly on a circuit
board. Most follow an open industry standard defined by JEDEC.

These components allow a manufacturer to place a single or several NAND
die inside one package with a standard pin-out of typically a TSOP or BGA
package. The standard packages are easily handled by the pick and place
systems as they adhere the parts to printed circuit boards (PCBs) prior to
being run through soldering machines.

BGA Packaged NAND

A simple single NAND die BGA component package image is shown above.
There is a substrate which has a NAND die attached to it. Wire bonding
machines connect the NAND die to the substrate which has via connections
to the balls on the bottom side. After the wiring is complete, a molding
compound encapsulates the top of the substrate providing for a rugged
physical package.

NAND Architecture - Component Packaging06

www.cactus-tech.comSection 06: NAND Architecture - Component Packaging Page 13

Mold Compound NAND Die Wire Bonding

Solder BallsDie AttachSubstrate

http://www.cactus-tech.com/en/

www.cactus-tech.comSection 06: NAND Architecture - Component Packaging Page 14

TSOP Packaged NAND

This illustration shows a NAND die in a TSOP package. There are a couple
of difference with the TSOP package from the BGA package. First, there are
leads as opposed to balls that take the connections from the NAND die to
the outside world. Second the entire assembly is encapsulated, not just
the top. The only exiting connection is the end of the lead frame. As with
the BGA package, multiple die can be stacked inside of a TSOP package.

Future sections will look at putting the NAND components and a controller
together to create a Solid State Drive as well as the challenges required of
the SSD controller technology.

Mold Compound NAND Die Wire Bonding

Tape
Lead

http://www.cactus-tech.com/en/

As shown to the left, the basic SSD consists of a controller chip which
manages one or more NAND components, each of which could be
comprised of multiple NAND die. The diagram is generic in the sense that
it doesn’t matter what final host interface is used.

As a real life example, see the image of a SATA SSD’s internal circuit board
above. All the rectangular components are NAND chips with the square
component as the single controller for this SSD. The controller does not
necessarily need to be in a square package, it just happens to be in this
case.

Previous sections described the NAND architecture from the basic NAND
cell to a packaged component. This section begins to integrate the
controller into the picture. Without a controller, the NAND is a relatively
unintelligent storage device.

The reason for the controller function is to manage the NAND components
and create a standard interface which communicates well with host
systems. There are many popular interfaces today such as Serial ATA
(SATA), SD, MMC, USB, PCIe as well as Parallel ATA (PATA, aka IDE).

All of these SSD interfaces have a common controller architecture design
in which a controller resides between the NAND memory and the host
system. In future articles we will look at the tasks a controller handles, but
here we focus on the basic architecture of a generic Solid State Drive (SSD).

SSD Controller Architecture - Basic Overview07

www.cactus-tech.comSection 07: SSD Controller Architecture - Basic Overview Page 15

Controller

Host
Inter.

Interface

Examples:
SATA
PATA

SD
USB
etc.

Host
System

Basic Solid State Drie (SSD) Architecture

NAND NAND NAND NAND

NAND NAND NAND NAND

NAND
Mgmt.

http://www.cactus-tech.com/en/

www.cactus-tech.comSection 07: SSD Controller Architecture - Basic Overview Page 16

Something you’ll notice about the previous image is how tightly packed the
NAND components are to each other. The limitation to an SSD’s storage
capacity is how many NAND die can be integrated into the industry
standard package along with a controller’s ability to address (read/write)
each die.

For very small packaged SSD such as microSD cards, there is not sufficient
physical space for packaged NAND and controller to be used.

In these cases, the controller die and NAND
die are stacked on top of each other and
connections are made with wire bonding.

The diagram above only shows a single
NAND die in the microSD package, but
multiple NAND die can be stacked with the
controller to make higher density/capacity
parts. The size of the die in the cross
section is not proportional to the actual

size for clarity. With wafer backgrinding techniques as many 16 NAND die
have been successfully integrated into a single microSD card.

The next section will focus more on multiple channels, external RAM and
other features common in today’s Solid State Drive devices.

Mold Compound

Contact Pad Substrate Die Attach
Discrete

Components

NAND Die

Controller Die

Cutaway Illustration of microSD Card

Wire Bonding

http://www.cactus-tech.com/en/

This section focuses on the connection between the SSD controller and
the NAND flash. There are many NAND configurations in SSD design and
it makes a large difference to the SSD’s overall power, performance and
cost.

The illustration to the right shows a common 2.5” SATA III SSD NAND
configuration. In this example, there are 8 Channels connected to the
NAND chips. For each channel there are 2 Banks of NAND components.

There is a control line which selects either Bank 1 or Bank 2 to be active on
the Data/Control Bus for a specific channel. This control line is connected
to the Chip Select of each NAND component to enable or disable the
component.

SSD Controller Architecture - Channels and Banks08

www.cactus-tech.comSection 08: SSD Controller Architecture - Channels and Banks Page 17

Data/Ctrl Bus

Data/Ctrl Bus

Data/Ctrl Bus

Data/Ctrl Bus

Data/Ctrl Bus

Data/Ctrl Bus

Data/Ctrl Bus

Data/Ctrl Bus

Data/Ctrl Bus

Data/Ctrl Bus

Data/Ctrl Bus

Data/Ctrl Bus

Data/Ctrl Bus

Data/Ctrl Bus

Data/Ctrl Bus

Data/Ctrl Bus

Bank Control 2

Bank Control 1

Channel 0

Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

Channel 6

Channel 7

NAND Banks and Channels Illustration

NAND

NAND

NAND

NAND

NAND

NAND

NAND

NAND

NAND

NAND

NAND

NAND

NAND

NAND

NAND

NAND

BANK 1 BANK 2

http://www.cactus-tech.com/en/

www.cactus-tech.comSection 08: SSD Controller Architecture - Channels and Banks Page 18

NAND Channels
Channels refer to the number of flash chips the controller can talk to
simultaneously. Low end SSDs usually have 2 or 4 channels; high end SSDs
usually have 8 channels, some have 10 channels.

SSD manufacturers can trade off performance vs power consumption
by stuffing less channels at time of manufacture. The limitation on more
channels is added die size, pin count and power consumption, which all
increase the cost.

NAND Banks
Each flash chip at the same location in a channel together constitutes a
bank. Refer to the diagram on the previous page. Each channel can have
multiple chips. The limitation on maximum number of chips is a result of
pin count, die size and cost considerations.

Additional SSD Performance Techniques
To further increase performance, controllers can take advantage of
interleaving. Each NAND flash component can have multiple die in it, this
is particularly so for high density parts. 2, 4 and 8 die packs are common.

The illustration below shows a cutaway of a TSOP NAND component with
multiple layers of die stacked on top of each other to create a single large
capacity NAND flash chip.

For a multi-die package, it is possible for each die to carry out a command;
this is refer to as interleaving and can significantly increase device
performance. The ability to interleave is dependent on flash, controller
and firmware support.

Another mechanism to improve performance is multi-plane operation. A
flash chip is internally organized in planes, with low density devices being
single plane and higher density devices with 2, 4 or more planes.

In a multi-plane devices, it is possible for all planes to carry out a command
in parallel (this is like interleaving but for a single die). Multi-plane
operation, when available, can substantially improve device performance.

This section provided a basic understanding of the Channel and Bank
architecture as well as performance enhancement techniques in an SSD.
There are other more advanced techniques, such as copyback writes,
cache reads, etc. not covered in this eBook.

http://www.cactus-tech.com/en/

Host Interface
The host interface of a controller is typically
designed to one industry standard interface
specification. There are several interfaces
made to address different system and design
requirements. The most popular are SATA,
SD, USB, PATA/IDE and PCIe.

SMART (Self-Monitoring, Analysis and
Reporting Technology)
The SMART function, available in some
controllers, monitors and records data
regarding many attributes of the SSD and
memory. An example is the ability to monitor
the percentage of endurance cycles remaining
in the SSD since this is a key determining
factor of the life remaining.

Wear Leveling
Wear Leveling is the ability to even out the
number of write cycles throughout the
available NAND. Since each NAND block has
a limited number of erase/write cycles, if only
one physical block is written continuously, it
will quickly deplete its endurance cycles. A
controller’s Wear Leveling algorithm monitors
and spreads out the writes to different
physical NAND blocks.

This section focuses on the main blocks of a generic SSD controller and its
connection to the NAND flash. Controller functionality varies with the type
of product for which it is intended.

A simple consumer SD card controller is designed for cost and in some
cases performance. For this application, it would be an overkill and
unneeded expense to add an encryption & decryption engine to the silicon.

In other cases, such as secure military grade SSD, encryption & decryption
may be an absolute necessity. Other applications rely on SMART data
to predict an imminent failure looming in the future so the SSD can be
replaced prior to an unexpected failure.

The illustration above shows the basic blocks of a SSD. A brief description
of each block follows.

SSD Controller Architecture - Block Diagram09

www.cactus-tech.comSection 09: SSD Controller Architecture - Block Diagram Page 19

NAND

NAND

NAND

NAND

NAND

NAND

NAND

NAND

NAND

NAND

NAND

NAND

NAND

NAND

NAND

NAND

Multiple

Typical Controller Functions and Blocks

Generic Solid State Drive (SSD) Controller Architecture

ChannelsNAND

Host
Interface

(Examples)
SATA
PATA

SD
USB
PCle

SMART Buffer/
Cache Misc.

I/O

NAND
Memory
Interface

Defect
Mgmt.

CPU/
RISC

Processor

ECC
Engine

Write
Abort

Wear
Leveling

Read &
Program
Disturb

Encrypt
&

Decrypt
Engine

START

DATA BLOCK

Before Garbage
Collection

Free

Free

Free

Free

Free

Free

Free

Free

SPARE BLOCK

Free

Free

Free

Free

Free

Free

Free

Free

After Garbage
Collection

NEW
DATA BLOCK

NEW
DATA BLOCK

Free

Free

Free

Free

Free

Free

Free

Free

LBA #6

Free

Free

Free

Free

Free

Free

Free

Invalid

Free

Free

Free

Free

Free

Free

LBA #6

Invalid

LBA #6

Free

Free

Free

Free

Free

Invalid

Invalid

Invalid

Invalid

Invalid

Invalid

Invalid

LBA #6

Invalid

PAGE

1st WRITE

DATA BLOCK

LBA #6

Free

Free

Free

Free

Free

Free

Free

2nd WRITE

DATA BLOCK

3rd WRITE Nth WRITE

DATA BLOCK DATA BLOCK

Invalid

Invalid

Invalid

Invalid

Invalid

Invalid

LBA #6

Invalid

DATA BLOCK

http://www.cactus-tech.com/en/

www.cactus-tech.comSection 09: SSD Controller Architecture - Block Diagram Page 20

Read & Program Disturb
With the finer and finer trace widths of the
NAND flash, more issues arise to maintain
the data contents of the NAND cells. Read
& Program Disturb occur when cells are
read or written causing cross coupling to
adjacent cells and occasionally changing
their values. Controllers need algorithms
and in some cases circuitry to compensate
for this phenomena.

Encrypt & Decrypt Engine
For higher security applications, a hardware
encryption and decryption engine is
generally built into the silicon of the
controller. The encryption engine is typically
implemented in hardware to ensure speed
for encrypting/decrypting on the fly. The
most popular encryption method for SDDs
today is AES256.

Buffer/Cache
Controllers generally have a high speed
SRAM/DRAM cache buffer used for buffering
the read and/or write data of the SSD. Since
this cache uses volatile memory, it subjects
data to loss if power is unexpectedly
removed. It is common to see both internal
caches in the controller chip itself as well as
external RAM cache chips.

CPU/RISC Processor
The heart of every SSD is the main processing core.
This can be a CPU or RISC processor. The size and
performance of the CPU/RISC processor determines
how capable the controller can be.

ECC Engine
Error Checking & Correction are a key part of today’s
SSD. ECC will correct up to a certain number of bits
per block of data. Without ECC, many of the low cost
consumer flash cards using very inexpensive memory
would not be possible.

Write Abort
Write Abort is the when power to the SSD
is lost during a write to the NAND flash.
Without a battery or SuperCap backed
cache, it is likely this data in transit will be
lost. The more important aspect of this is
to ensure the SSD’s internal metadata and
firmware remain uncorrupted. This is the
function of Write Abort circuitry mainly
found in Industrial Grade products.

Miscellaneous I/O
Simple functions such as chip select pins for the
NAND components are handled with several input/
output pins. There are also a number IO functions
required for initial programming and production.

Error Check
Correct

Misc. Input
Output

http://www.cactus-tech.com/en/

NAND Memory Interface
The NAND memory interface was covered
in the previous article on NAND banks and
channels. Depending on the controller there
can be a single NAND channel up to 10 or
more. Each channel can have one or more
NAND chips.

Defect Management
Every controller needs a method to
deal with bad blocks of memory and
new defects. At the point a NAND block
becomes unusable, some action on the
SSD controller’s part must happen. In some
cases a spare sector replaces the failed
block. In a poor controller design, the SSD
fails. Each controller has its method to deal
with defects.

www.cactus-tech.comSection 09: SSD Controller Architecture - Block Diagram Page 21

Data/Ctrl Bus

Data/Ctrl Bus

Data/Ctrl Bus

Data/Ctrl Bus

Data/Ctrl Bus

Data/Ctrl Bus

Data/Ctrl Bus

Data/Ctrl Bus

Data/Ctrl Bus

Data/Ctrl Bus

Data/Ctrl Bus

Data/Ctrl Bus

Data/Ctrl Bus

Data/Ctrl Bus

Data/Ctrl Bus

Data/Ctrl Bus

Bank Control 2

Bank Control 1

Channel 0

Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

Channel 6

Channel 7

NAND Banks and Channels Illustration

NAND

NAND

NAND

NAND

NAND

NAND

NAND

NAND

NAND

NAND

NAND

NAND

NAND

NAND

NAND

NAND

BANK 1 BANK 2

http://www.cactus-tech.com/en/

The image to the left shows a 256KB NAND block which is comprised
of 64 Pages containing 4KB of storage capacity each. If the host system
writes 256KB of data in sequential LBAs and the SSD controller stores this
data in sequential Physical Block Addresses - starting at the first 4K Page
and ending at the 64th in the block - then there has effectively been 1
endurance cycle used for the entire block.

The chart to the right of the 256KB block shows how sequential data is the
ideal method of storing data in a NAND flash device. It evenly distributes
all of the write cycles to the NAND Pages and Blocks so that one individual
NAND Page/Block is not worn out prior to other Pages/Blocks.

Before continuing a couple clarifications:

•	 An Endurance cycle only occurs when an erase occurs, so on the first
write, there is actually not an endurance cycle.

•	 Reading a NAND cell does not affect the endurance cycles of the NAND
cell.

This section takes a look at how SSD controllers use Wear Leveling
algorithms to compensate for the finite number of erase cycles inherent
in NAND flash blocks.

A SSD controller receives commands from the host system which tell it
where to read or write a piece of data. For simplicity of this article on
Wear Leveling we will make two assumptions: 1) Each piece of data is 4KB
and; 2) The NAND pages are also 4KB. In real world situations, the sizes
of the data and page sizes can vary depending on host system and NAND
memory used.

The host system provides the Logical Block Address (LBA) of the data it
would like to read or write. It would be relatively straight forward for the
SSD controller to simply read or write the LBA to the exact same Physical
Block Address. Let’s take a look at what would occur.

Wear Leveling and Sequential Writing to NAND Memory

SSD Controller Functions - Wear Leveling10

www.cactus-tech.comSection 10: SSD Controller Functions - Wear Leveling Page 22

Sequentially Written Flash Block

Number

of Endurance

Cycles

Per Page

Pa
ge

 0

Pa
ge

 1

Pa
ge

 2

Pa
ge

 3

Pa
ge

 4

Pa
ge

 5
9

Pa
ge

 6
0

Pa
ge

 6
1

Pa
ge

 6
2

Pa
ge

 6
3

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

256KB Logical Block

http://www.cactus-tech.com/en/

What Does Wear Leveling Do?
Wear Leveling algorithms in SSD controllers attempt to evenly distribute
host system writes throughout the entire SSD. Since NAND flash has a
finite number of writes per block, wear leveling attempts to use every
endurance cycle of the SSD prior to the end of its useful life.

There are many different schemes used by the different SSD controller
designers, but they all share a couple characteristics.

As shown above, they store the host data written for a Logical Block
Address (LBA) to a physical location that has the least amount of endurance
cycles used. Host data written to the same LBA is typically not stored in the
same physical location of NAND. The controller must keep track of the
translation from Logical to Physical block in a table or other method.

Another common occurrence is when static data on the SSD never moves
- such as Operating System and Application data. It’s stored once on the
SSD and thereafter left alone. For these situations most new controllers
will automatically move this static data to other physical NAND locations
so they can take advantage of the endurance cycles of these NAND cells.

All alone, Wear Leveling cannot solve all an SSD’s tasks, but it is an
important part to creating a more reliable SSD which efficiently uses the
limited endurance available in NAND memory.

www.cactus-tech.comSection 10: SSD Controller Functions - Wear Leveling Page 23

Wear Leveling and Non-Sequential Writing to NAND Memory

Unfortunately, real life usage of the SSDs rarely have the ideal sequential
usage patterns. There are File system directories which need to be updated
after any file is altered. There are mismatches in the data sizes from the
host and the Page/Block sizes of the NAND on the SSD. There is the need
to reclaim previously written blocks and many other factors.

The Non-Sequential image above shows a worst case situation where data
is constantly written to only the first two 4K Pages. If the SSD controller just
continued writing this data to these physical pages of the NAND, it would
quickly exhaust the total number of endurance cycles of these cells.

Non-Sequentially Written Flash Block

Number

of Endurance

Cycles

Per Page

Pa
ge

 0

Pa
ge

 1

Pa
ge

 2

Pa
ge

 3

Pa
ge

 4

Pa
ge

 5
9

Pa
ge

 6
0

Pa
ge

 6
1

Pa
ge

 6
2

Pa
ge

 6
3

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

256KB Logical Block

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

256KB Logical Block

Logical to Physical Translation

Translation Table

LOGICAL PHYSICAL

Page 0 Page 12

Page 1 Page 18

Page 2 Page 3

Page x Page y

Page x Page y

Page x Page y

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

256KB Physical Block

http://www.cactus-tech.com/en/

First Page Writes to Fresh SSD

On the first write to a fresh NAND block, things are easy. All pages are
erased and it is just a matter of writing sequentially to these erased Pages.

Shown above is how a typical Garbage Collection algorithm would perform
the initial task of writing 10 new pages of data on an already erased block.

This section covers SSD controller’s Garbage Collection algorithms.
Garbage Collection is the process to reclaim previously written blocks of
data so they can be rewritten with new data.

The reason there is a need for Garbage Collection is NAND’s requirement
to be erased prior to being written. A block is the smallest erasure unit of
NAND flash and it is typically made up of 32 to 64 Pages.

A page of data can be written as long as it is already erased, but it is very
inefficient to erase 32 or 64 pages in a block just to reclaim a single Page.
There are many challenges related to Garbage Collection algorithms and
efficiency, reliability and performance can be affected by its design.

What Does Wear Leveling Do?

The diagram above shows two blocks of a fresh SSD which contain 32
Pages capable of storing 4KB of data each. This is a typical configuration of
NAND and we will use it for the remainder of this section.

As you can see all of the Pages are erased from the factory and ready to be
written. We will cover the other states of Valid Data and Dirty/Stale Data
as we move forward.

SSD Controller Functions - Garbage Collection11

www.cactus-tech.comSection 11: SSD Controller Functions - Garbage Collection Page 24

128KB Physical Block #1 128KB Physical Block #2

Fresh SSD with (32) 4KB Pages per Block

128KB Physical Block #2

E E E E

E E E E

E E E E

E E E E

E E E E

E E E E

E E E E

E E E E

E E E E

E E E E

E E E E

E E E E

E E E E

E E E E

E E E E

E E E E

128KB Physical Block #1

All Pages are Erased

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

4K
Page

D Dirty/Stale Data

E Erased Data

Valid Data

1 2 3 4

5 6 7 8

9 10 E E

E E E E

E E E E

E E E E

E E E E

E E E E

128KB Physical Block #1

E E E E

E E E E

E E E E

E E E E

E E E E

E E E E

E E E E

E E E E

128KB Physical Block #2

E E E E

E E E E

E E E E

E E E E

E E E E

E E E E

E E E E

E E E E

128KB Physical Block #1

E E E E

E E E E

E E E E

E E E E

E E E E

E E E E

E E E E

E E E E

128KB Physical Block #2

Fresh SSD with (32) 4KB Pages per Block 10 Pages of Valid Data Written

D Dirty/Stale Data

E Erased Data

Valid Data

http://www.cactus-tech.com/en/

What happens next - Garbage Collection?

Now the moment you’ve all been waiting for. What happens when all of the
pages of the NAND block are either occupied with good data or previously
written data which is no longer valid?

This is where Garbage Collection comes into play. To reclaim the NAND
pages to an erased state, first any valid data in that block needs to be
copied and written to the erased pages in a new NAND block. As you can
see from the latest diagram, 22 valid pages of data were copied from the
full Block #1 and written to the fully erased Block #2.

Once the valid data has been successfully written to the new block, then
the entire Block #1 is erased. This is a one step process and it deletes any
valid or dirty/stale data. Now Block #1 can be written to as if it were a fresh
block.

The design of the Garbage Collection algorithm has a lot to do with other
factors such as Write Amplification, so it is an important part of an overall
SSD design.

www.cactus-tech.comSection 11: SSD Controller Functions - Garbage Collection Page 25

Updating Page Data

We take it a step further in the above diagram by updating the 10 pages
we originally wrote to the NAND. Since we would have to erase the entire
block to erase the pages we want to update, we instead copy and write the
updated data in the next available erased pages and mark the previous
pages as dirty or stale.

At this point, the 10 pages are stored with valid data and we have 10 pages
marked as dirty which cannot be written until the entire NAND Block is
erased.

Filling the NAND Block

This latest diagram above shows an additional 12 pages of data written
to the NAND block. These new items 11 - 22 were placed in the final 12
erased pages at the end of NAND Block #1.

At this point, the entire NAND Block has been used. There are no longer
erased pages to store data since there is only stored data or dirty data
which needs to be erased to reclaim these pages.

1 2 3 4

5 6 7 8

9 10 E E

E E E E

E E E E

E E E E

E E E E

E E E E

128KB Physical Block #1

E E E E

E E E E

E E E E

E E E E

E E E E

E E E E

E E E E

E E E E

128KB Physical Block #2

10 Pages of Valid Data Written

D D D D

D D D D

D D 1 2

3 4 5 6

7 8 9 10

E E E E

128KB Physical Block #1

E E E E

E E E E

E E E E

E E E E

E E E E

E E E E

E E E E

E E E E

128KB Physical Block #2

Updating 10 Pages of Data

E E E E

E E E E

D Dirty/Stale Data

E Erased Data

Valid Data

D D D D

D D D D

D D 1 2

3 4 5 6

7 8 9 10

11 12 13 14

15 16 17 18

19 20 21 22

128KB Physical Block #1

E E E E

E E E E

E E E E

E E E E

E E E E

E E E E

E E E E

E E E E

128KB Physical Block #2

Filled NAND Block

D Dirty/Stale Data

E Erased Data

Valid Data

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 E E

E E E E

E E E E

128KB Physical Block #2

E E E E

E E E E

E E E E

E E E E

E E E E

E E E E

E E E E

E E E E

128KB Physical Block #1

Reclaiming a NAND Block

D D D D

D D D D

D D 1 2

3 4 5 6

7 8 9 10

E E E E

E E E E

E E E E

128KB Physical Block #1

E E E E

E E E E

E E E E

E E E E

E E E E

E E E E

E E E E

E E E E

128KB Physical Block #2

Mixed Block with Valid, Dirty and Erased Pages

E E E E

E E E E

E E E E

E E E E

E E E E

E E E E

E E E E

E E E E

128KB Physical Block #2

D D D D

D D D D

D D 1 2

3 4 5 6

7 8 9 10

11 12 13 14

15 16 17 18

19 20 21 22

128KB Physical Block #1

Filling the NAND Block

D Dirty/Stale Data

E Erased Data

Valid Data

http://www.cactus-tech.com/en/

Example of Operating System and/or SSD without
TRIM Command

For TRIM to be functional, the command must be supported by both the
Operating System and the SSD. The newer versions of the Windows, Mac
and Linux OS along as well as others support the TRIM command.

The illustration above shows a simplified example of a system without the
TRIM command support. In this example, the host system has a file which
is 32 pages in size (128KB), which has been deleted. The operating system
knows this has been deleted and knows these are free areas (LBAs) it can
use to write to.

But since the operating system simply marks these areas as available
in the directory, there is no mechanism to tell the SSD controller these
pages have been deleted. On the physical blocks of the SSD in the image
on the right, you can see the SSD controller still believes there is valid data
in these blocks. Therefore, it does not mark them as dirty and does not
perform garbage collection on them until they are later overwritten by the
operating system.

This section covers the TRIM command supported by some SATA, SCSI and
other SSD controllers. The TRIM command is related to a SSD’s Garbage
Collection process described in the previous section.

With Garbage Collection, when the Operating System replaces LBA (Logical
Block Addresses) which already contain data, such as during a file update/
overwrite, the SSD stores the updated data on fresh pages and marks the
existing pages as Dirty (or Stale).

At a later time, Garbage Collection reclaims these dirty pages when it
erases an entire block, which is the smallest area of erasure in NAND flash.
This freshly erased block is now available to be written with new data.

So Why the TRIM Command?
When the Operating system overwrites the same LBAs, and the SSD
controller marks them as dirty for future erasure, it is clear there is no
longer valid data in these pages.

But when a file is erased in the operating system, many times only the
operating system’s directory is updated. In these cases, there is no erase
command sent to the SSD for the LBAs no longer considered valid by the
operating system.

In comes the TRIM command. By issuing the TRIM command when a file
is permanently deleted, it notifies the SSD that the associated LBAs no
longer have valid data and can be marked as dirty for the next round of
data collection.

SSD Controller Functions - TRIM Command12

www.cactus-tech.comSection 12: SSD Controller Functions - TRIM Command Page 26

D D D D

D D D D

D D D D

D D D D

D D D D

D D D D

D D D D

D D D D

128KB Physical Block #1

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

128KB Physical Block #1

What the Operating
System Knows

What the
SSD Controller Thinks

Without Trim Command

E Deleted Data

D Dirty/Stale Data

E Erased Data

Valid Data

http://www.cactus-tech.com/en/

www.cactus-tech.comSection 12: SSD Controller Functions - TRIM Command Page 27

Example: Operating System & SSD with TRIM Command
For systems having TRIM support by both the Operating System and the
SSD, the operating systems and SSD are in sync. After deleting a file, the
operating system issues a TRIM command to the SSD with the deleted
LBAs. The SSD then marks these LBAs as dirty and is able to reclaim them
efficiently during its garbage collection process.

The illustration above shows a simplified example of the TRIM command.
As in the previous example, the host system has a file which is 32 pages in
size (128KB), which has been deleted. The operating system marks these
areas as available in the directory, then issues the TRIM command with
LBAs to the SSD. The SSD controller then marks these pages as dirty for
garbage collection process.

D D D D

D D D D

D D D D

D D D D

D D D D

D D D D

D D D D

D D D D

128KB Physical Block #1

D D D D

D D D D

D D D D

D D D D

D D D D

D D D D

D D D D

D D D D

128KB Physical Block #1

What the Operating
System Knows

What the
SSD Controller Thinks

With Trim Command

D Dirty/Stale Data

E Erased DataE Deleted Data

Valid Data

http://www.cactus-tech.com/en/

This section describes Over-Provisioning supported by many Solid State
Drives, whether advertised on not. It is basically data space not available
to the operating system which is used by the SSD to perform internal tasks
such as bad block mapping, wear leveling and garbage collection.

The amount of Over-Provisioned area is generally set at the factory during
the final low level formatting of the SSD. The typical percentages of Over-
Provisioning are 0%, 7% and 28%.

An example of these percentages seen in the market would be a 128GB
SSD which can be marketed as a 128GB with 0% Over-Provisioning, 120GB
at 7% and 100GB at 28%. It is the same SSD with different amounts of
“user-space” available.

Over-Provisioning Which is Typically Not Counted
One item that is not readily apparent to most users is the fact that NAND
components are sold in binary capacity points versus SSD which are sold
in decimal capacities. As shown to the right, there is a little over 7% of the
SSD’s NAND capacity which is not available to the user.

SSD Controller Functions - Over-Provisioning13

www.cactus-tech.comSection 13: SSD Controller Functions - Over-Provisioning Page 28

The International Disk Drive Equipment and Materials Association (IDEMA)
has published a standard (LBA 1-03) for drive capacities that most HDD and
SSD manufacturers follow. The 128GB and 512GB capacities are shown in
the table above.

This binary to decimal difference is typically not counted as Over-
Provisioning. The space is used internally by the controller for firmware
storage, spare sectors, bad block mapping, wear leveling and other tasks
similar to Over-Provisioning.

7% Difference in Binary to Decimal SSD Capacity
used internally by SSD Controller

MARKETED
CAPACITY

512GB

128GB

IDEMA DECIMAL
CAPACITY (BYTES)

512,110,190,592

128,035,676,160

BINARY CAPACITY
(BYTES)

549.755,813,888

137,438,953,472

DIFFERENCE

7.35%

7.34%

http://www.cactus-tech.com/en/

www.cactus-tech.comSection 13: SSD Controller Functions - Over-Provisioning Page 29

Over-Provisioning at 0%, 7% and 28%

For this discussion, the 7% binary to decimal capacity is already removed.
The table above shows the decimal 128GB and 512GB at the three most
common Over-Provisioning percentages.

Over-Provisioning typically come in 0%, 7% or 28% chunks. Most of the
lower capacity products have 0% Over-Provisioning in addition to many of
the Industrial Grade devices built with the extremely high endurance SLC
NAND.

For many client SSD built with MLC or TLC NAND on the market today, 7%
Over-Provisioning is used and Enterprise SSD typically use 28%.

7% Difference in Binary to Decimal SSD Capacity
used internally by SSD Controller

0%
OVERPROVISIONING

512GB

128GB

7%
OVERPROVISIONING

480GB

120GB

28%
OVERPROVISIONING

400GB

100GB

What are the Advantages and Disadvantages of
Over-Provisioning?
The advantages of Over-Provisioning are to reduce Write Amplification
while increasing endurance and performance. The key disadvantage of
Over-Provisioning is loss of user capacity.

A user is trading higher reliability and more endurance and in some cases
better performance for less usable space.

http://www.cactus-tech.com/en/

Cactus Technologies Limited
Suite C, 15/F, Capital Trade Center

62 Tsun Yip Street, Kwun Tong
Kowloon, Hong Kong
Tel: +852-2797-2277

Email: sales@cactus-tech.com

Cactus USA
3112 Windsor Road

Suite A356
Austin, Texas 78703
Tel: +512-775-0746

Email: americas@cactus-tech.com

Cactus-Tech.com

eBook

SSD 101

http://www.cactus-tech.com/en/
mailto:americas@cactus-tech.com
mailto:sales@cactus-tech.com

	SSD 101 - Table of Contents
	01 - The Basic NAND Flash Sale
	02 - SLC, MLC an dTLC NAND Flash
	03 - NAND Flash - Strings and Arrays
	04 - NAND Flash - Pages and Blocks
	05 - NAND Flash - Planes and Die
	06 - NAND Architecture - Cpmponent Packaging
	07 - SSD Controller Architecture - Basic Overview
	08 - SSD Controller Architecture - Channels and Banks
	09 - SSD Controller Block Diagram
	10 - SSD Wear Leveling
	11 - SSD Garbage Collection
	12 - SSD TRIM Command
	13 - SSD Over-Provisioning

